Efficient Facade Segmentation using Auto-Context Supplementary Material

Varun Jampani* MPI for Intelligent Systems Tübingen, Germany

varun.jampani@tuebingen.mpg.de

Raghudeep Gadde* Université Paris-Est, LIGM ENPC, ECP, Paris, France gadder@imagine.enpc.fr

Peter V. Gehler MPI for Intelligent Systems Tübingen, Germany

pgehler@tuebingen.mpg.de

We present more qualitative (Figures 1 to 6) and quantitative (Table 1 and Table 2) facade segmentation results. The images have been selected based on the absolute overall pixel-accuracy of ST3 and include images with the (i) highest, (ii) average, and (iii) lowest performance.

Figure 1. (a) Sample facade images from ECP dataset, (b) ground truth segmentation, (c,d,e) result of various classification stages (ST1, ST2, ST3) of the auto-context method, (f) Potts model using ST3 as unaries, and (g) the result obtained by applying reinforcement learning [8] using the output of ST3.

^{*}The first two authors contribute equally to this work.

(a) CMP Dataset

Class		Auto Context			AC + Potts Model			
	[6]	ST1	ST2	ST3	PW1	PW2	PW3	
Background	58	67.1	71.8	72.6	68.0	72.6	73.1	
Facade	73	74.6	75.3	75.2	80.5	79.9	79.3	
Window	61	71.6	76.1	77.0	74.1	77.4	78.1	
Door	54	37.9	45.5	47.0	39.6	46.4	48.7	
Cornice	41	39.1	47.5	49.6	40.0	48.3	50.1	
Sill	27	21.1	32.8	36.2	16.9	30.3	34.6	
Balcony	46	31.6	44.1	46.7	31.6	45.2	48.1	
Blind	48	22.7	35.8	40.1	19.5	34.7	39.9	
Deco	24	10.4	13	13.8	6.1	10.0	11.4	
Molding	54	63.2	65.4	66.5	64.2	66.0	67.2	
Pillar	25	5.71	11.2	13.6	1.33	7.72	9.78	
Shop	59	40.9	45.6	45.6	42.8	46.7	46.8	
Average	47.5	40.50	47.00	48.65	40.38	47.1	48.92	
Overall	60.3	61.83	65.47	66.24	64.46	67.48	68.08	
IoU	-	29.26	34.46	35.86	30.67	36.02	37.47	

(b) Graz Dataset

Class	Au	to Context (A	AC)	A			
	ST1	ST2	ST3	PW1	PW2	PW3	[7]
Door	57.3	62.4	62.7	57.3	62.8	63	41
Window	78.2	81.2	81.5	77.8	80.6	80.9	60
Wall	94.9	94.7	94.9	95.8	95.6	95.8	84
Sky	87.4	91.2	90.5	87.7	91.4	90.6	91
Average	79.47	82.40	82.42	79.65	82.61	82.56	69
Overall	90.18	91.02	91.16	90.78	91.53	91.68	78
IoU	71.25	73.31	73.25	72.49	74.45	74.39	58

Class	[2]	[5]	Auto Context(AC)			AC + Potts Model		
			ST1	ST2	ST3	PW1	PW2	PW3
Building	-	-	87.7	88.1	88.2	92.7	91.8	92.1
Car	-	-	47.1	53.6	54.8	51.1	57.0	58.2
Door	-	-	6.52	6.03	5.12	2.61	3.22	1.71
Pavement	-	-	24	25.3	24.6	22.0	24.2	23.3
Road	-	-	80.3	82.1	84.5	85.3	85.1	87.6
Sky	-	-	86.2	87.2	87.4	88.3	88.6	88.9
Vegetation	-	-	53.3	57.5	57.6	53.4	58.1	57.9
Window	-	-	20.3	22.6	25.4	13.0	16.9	19.5
Various	-	-	19.9	20.6	21.0	11.6	12.2	12.1
Average	56.61	-	47.26	49.22	49.84	46.68	48.56	49.04
Overall	67.33	71.28	71.52	72.9	73.46	74.1	74.62	75.23
IoU	-	35.96	37.01	38.69	39.36	37.74	38.96	39.57

Table 1. Segmentation results of various methods on CMP, Graz and labelmeFacades datasets. ST1, ST2, and ST3 correspond to the classification stages in the auto-context method. PW1, PW2, and PW3 refer to a Potts model using ST1, ST2, and ST3, respectively, as unaries. Published results are shown for comparisons. The method of [7] parses the image into a lattice representation and is not trying to maximize pixel accuracy results.

Class				Auto Context (AC)			AC	C + Potts Mo	del
	[4]	[1]	[3]	ST1	ST2	ST3	PW1	PW2	PW3
Building	91	91	84	90.3	90.5	90.9	92.7	92.5	92.5
Car	69	70	51	63.3	74.8	72.4	69.4	79.1	76.6
Door	18	18	73	62.7	62.3	63.6	66.0	63.6	65.3
Pavement	33	33	55	43.0	46.5	47.1	43.1	48.6	48.8
Road	55	57	81	78.2	82.3	80.3	80.9	84.7	82.1
Sky	93	97	99	97.6	98.5	98.6	98.2	98.8	98.9
Vegetation	89	90	92	91.1	92.1	92.3	92.4	92.8	92.9
Window	74	71	78	65.9	67.1	68.4	65.6	66.5	68.2
Average	65.3	65.9	66.4	74.01	76.78	76.7	76.04	78.32	78.14
Overall	83.16	83.84	83.40	84.68	85.95	86.12	86.39	87.29	87.29
IoU	-	-	-	58.7	61.26	61.48	61.49	63.39	63.54

(a) eTRIMS Dataset

Table 2. Segmentation results of various methods on eTRIMS dataset. ST1, ST2, and ST3 correspond to the classification stages in the auto-context method. PW1, PW2, and PW3 refer to a Potts model using ST1, ST2, and ST3, respectively, as unaries. Published results are shown for comparisons.

References

- A. Cohen, A. G. Schwing, and M. Pollefeys. Efficient structured parsing of facades using dynamic programming. In *Computer Vision and Pattern Recognition (CVPR), IEEE Conference on*, pages 3206–3213. IEEE, 2014.
- [2] B. Fröhlich, E. Rodner, and J. Denzler. Semantic segmentation with millions of features: Integrating multiple cues in a combined random forest approach. In *Asian Conference on Computer Vision (ACCV)*, pages 218–231. Springer, 2012.
- [3] C. Gatta and F. Ciompi. Stacked sequential scale-space taylor context. *IEEE Transactions on Pattern Analysis and Machine Intelli*gence, 2014.
- [4] A. Martinovic, M. Mathias, J. Weissenberg, and L. Van Gool. A three-layered approach to facade parsing. In European Conference on Computer Vision (ECCV), pages 416–429. Springer, 2012.
- [5] S. Nowozin. Optimal decisions from probabilistic models: the intersection-over-union case. In *Computer Vision and Pattern Recognition (CVPR), IEEE Conference on*, 2014.
- [6] R. Š. Radim Tyleček. Spatial pattern templates for recognition of objects with regular structure. In *Proc. German Conference on Pattern Recognition*, Saarbrücken, Germany, 2013.
- [7] H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser, S. Havemann, D. Fellner, and H. Bischof. Irregular lattices for complex shape grammar facade parsing. In *Computer Vision and Pattern Recognition (CVPR), IEEE Conference on*, pages 1640–1647, 2012.
- [8] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape grammar parsing via reinforcement learning. In *Computer Vision and Pattern Recognition (CVPR), IEEE Conference on*, pages 2273–2280. IEEE, 2011.

Highest Performance

Π Π Π I 1 4 4 1 8 1 11 H H П н H 1 -1 94.0% 94.4% 94.3% 94.2%

Average Performance

8.00 72.7% 82.7% 81.0% 78.4%

Figure 2. Qualitative results on ECP dataset images along with overall pixel accuracy (Stage-3 results).

Highest Performance								
95.2%	96.5%	95.0%	96.4%					
94.8%	94.9%	95.4%	94.7%					
	Average P	erformance						
92.8%	92.9%	92.5%						
			51.0 %					
91.8%	92.4%	93.0%	91.5%					
	Lowest Pe	erformance						
83.7%	85.4%		86.7%					
	69.0%	82.5%						

Figure 3. Qualitative results on Graz dataset images along with overall pixel accuracy (Stage-3 Results).

Highest Performance 95.1% 93.4% 95.9% 94.9% 92.2% 93.5% 94.6% 93.5% **Average Performance** 888 888 888 <u>Π</u> IΠ 龠 III 88 688 EFF 88.5% 89.9% 88.2% 86.4% 1 t 85.9% 88.9% 86.2% 90.9% Lowest Performance HHHE 1001 78.1%79.3% 72.2% 80.0% ACC NN N N 1 11 11 III · II 11 11 73.1% 72.2% 77.0% 77.5%

Figure 4. Qualitative results on eTRIMS dataset images along with overall pixel accuracy (Stage-3 results).

	Highest Pe	rformance	
86.5%	87.8%	89.3%	87.1%
88.9%	91.9%	90.1%	
	Average Pe	rformance	
78.8%	79.3%	78.6%	79.2%
F9.2%	80.1%	78.2%	F9.8%
	Lowest Per	rformance	
43.8%	54.9%	36.9%	37.9%
56.7%	50.2%	55.8%	47.5%
		55.070	

Figure 5. Qualitative results on labelmeFacades dataset images along with overall pixel accuracy (Stage-3 results).

Figure 6. Qualitative results on CMP dataset images along with overall pixel accuracy (Stage-3 results).